HY.GEN-E
ON-SITE HYDROGEN GENERATION SYSTEM

ZERO-EMISSION ELECTROLYSIS
HyGear offers hydrogen supply ranging from 10 Nm3/h up to 1000 Nm3/h. We apply both technologies of steam methane reforming and electrolysis. Our steam methane reformers offer the most energy efficient and cost-effective supply of hydrogen. Our electrolysers offer zero emission hydrogen supply and are especially suited for applications where electricity is affordable or zero emission is mandatory or desired.

The Hy.GEN-e systems produce hydrogen through alkaline electrolysis technology. This is the most widely applied and proven technology available today and therefore offers a safer and more reliable alternative to conventional hydrogen supply by trailers.

Our product portfolio consists of four standardised models and can be placed in parallel to tailor the total supply to the customer’s needs. Systems are containerised to minimise floor space, which is important in some applications like hydrogen filling stations.

Applications
- Flat glass industry
- Metal industry
- Food industry
- Semiconductor industry
- Electronics industry
- Chemical industry
- Hydrogen filling stations

KEY BENEFITS
- Zero local emissions
- Optimised efficiency by innovative gas treatment
- 100% reliability through backup supply
- Flexible contracting
- Autonomous and safe operation
- Compact and modular system
- Independent from third party supply
- Co-supply of hydrogen and oxygen possible
Pre-treated water is fed into the lye tank where the lye is prepared and sent to the electrolyser. In the electrolyser, water is split into hydrogen and oxygen gas using electric power. Hydrogen gas is evolved at the cathode side of a cell and exits through perforations at the cathode side separator plate towards the hydrogen manifold channels. From there, it flows out from the centre of the stack. The reaction involved at the cathode: \(2\text{H}_2\text{O} + 2\ e^- \rightarrow \text{H}_2 + 2\text{OH}^-\).

At the same time, oxygen gas is evolved at the anode side of the cells and flows out from the middle plates of cells. The reaction involved at the anode: \(2\text{OH}^- \rightarrow \text{H}_2\text{O} + \frac{1}{2}\text{O}_2 + 2\ e^-\).

Hydrogen and oxygen gas then enter the hydrogen separator and oxygen separator respectively, where the lye is separated from the gases and recycled back into the electrolyser via the lye pump. The hydrogen gas is then fed to the Temperature Swing Adsorption unit for further purification while oxygen is vented out as a by-product or can be upgraded and used when required.

Modular electrolyser

The electrolyser uses bipolar pressurisation technology with a specially designed material to prevent leakage during operation. This ensures a long life time, high system efficiency, and limited maintenance costs.

A special activation process is conducted at the cathode in the electrolyser to ensure high efficiency of water electrolysis with relatively low power consumption.

Effective TSA technology

The system uses Temperature Swing Adsorption (TSA) technology with the ability to operate under the pressure of 15 bar(g) without the use of any compressor. This is more energy and cost-efficient when compared to traditional gas separation systems.

The TSA consists of three hydrogen adsorbers that enable a continuous removal of moisture from the recirculated hydrogen.
1. Hydrogen cooler
2. Hydrogen purifier
3. Lye solution circulation pump
4. Electrolyser stack
5. Control cabinet
6. Transformer
7. Gas-lye treater
8. Demineralised water tank
9. Demineralised water pump
10. TSA vessels
SPECIFICATIONS

<table>
<thead>
<tr>
<th>MODEL</th>
<th>Hy.GEN-E 10</th>
<th>Hy.GEN-E 50</th>
<th>Hy.GEN-E 100</th>
<th>Hy.GEN-E 150</th>
</tr>
</thead>
<tbody>
<tr>
<td>OUTPUT</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nominal hydrogen flow</td>
<td>Max. 10 Nm³/h</td>
<td>Max. 50 Nm³/h</td>
<td>Max. 100 Nm³/h</td>
<td>Max. 150 Nm³/h</td>
</tr>
<tr>
<td>Hydrogen purity range</td>
<td>99.9% - 99.999 %</td>
<td>99.9% - 99.999 %</td>
<td>99.9% - 99.999 %</td>
<td>99.9% - 99.999 %</td>
</tr>
<tr>
<td>Pressure range</td>
<td>3 - 32 bar(g)</td>
<td>3 - 20 bar(g)</td>
<td>3 - 20 bar(g)</td>
<td>3 - 20 bar(g)</td>
</tr>
<tr>
<td>TYPICAL CONSUMPTION DATA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electricity</td>
<td>80 kVA</td>
<td>350 kVA</td>
<td>700 kVA</td>
<td>1000 kVA</td>
</tr>
<tr>
<td>Water</td>
<td>20 L/h</td>
<td>60 L/h</td>
<td>120 L/h</td>
<td>180 L/h</td>
</tr>
<tr>
<td>Compressed air</td>
<td>6 Nm³/h</td>
<td>6 Nm³/h</td>
<td>8 Nm³/h</td>
<td>10 Nm³/h</td>
</tr>
<tr>
<td>Cooling water</td>
<td>12 Nm³/h</td>
<td>20 Nm³/h</td>
<td>30 Nm³/h</td>
<td>40 Nm³/h</td>
</tr>
<tr>
<td>DIMENSIONS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Size</td>
<td>40 ft</td>
<td>40 ft</td>
<td>40 ft</td>
<td>Skid-mounted</td>
</tr>
<tr>
<td>OPERATING CONDITIONS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Start up time (warm)</td>
<td>45 min</td>
<td>35 min</td>
<td>30 min</td>
<td>30 min</td>
</tr>
<tr>
<td>Start up time (cold)</td>
<td>90 min</td>
<td>70 min</td>
<td>60 min</td>
<td>60 min</td>
</tr>
<tr>
<td>Modulation (H₂ product flow)</td>
<td>20 - 100 %</td>
<td>50 - 100 %</td>
<td>50 - 100 %</td>
<td>50 - 100 %</td>
</tr>
<tr>
<td>Ambient temperature range</td>
<td>5 - 50 ºC</td>
<td>5 - 50 ºC</td>
<td>5 - 50 ºC</td>
<td>5 - 50 ºC</td>
</tr>
</tbody>
</table>

All data and values are indicative and based on nominal and non-frost conditions. Normal condition (Nm³) is defined at a temperature of 0°C and pressure of 1.013 bar(a).

IF YOU REQUIRE OTHER SPECIFICATIONS, CONTACT US TO ASSIST YOU WITH THE MOST OPTIMAL SOLUTION.